44 research outputs found

    Waveform Design for Compressive Radar Sensing

    Get PDF
    Abstract-Wideband multi-frequency chirp waveforms combined with stretch processing on receive provides a way to obtain linear projection of range profiles at subNyquist sampling rates. Stable recovery of high resolution range profiles from these projections is guaranteed only if the mutual coherence between the columns of the sensing matrix is sufficiently small. In this note, we derive the sensing matrix for the compressive radar sensor with multi-frequency chirp waveforms and analyze its coherence structure. We show that for suitable choice of system parameters the inter-column coherence of unstructured random sensing matrices is achieved

    Sparse Signal Models for Data Augmentation in Deep Learning ATR

    Full text link
    Automatic Target Recognition (ATR) algorithms classify a given Synthetic Aperture Radar (SAR) image into one of the known target classes using a set of training images available for each class. Recently, learning methods have shown to achieve state-of-the-art classification accuracy if abundant training data is available, sampled uniformly over the classes, and their poses. In this paper, we consider the task of ATR with a limited set of training images. We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a Convolutional neural network (CNN). The proposed data augmentation method employs a limited persistence sparse modeling approach, capitalizing on commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting. Using this estimated model, we synthesize new images at poses and sub-pixel translations not available in the given data to augment CNN's training data. The experimental results show that for the training data starved region, the proposed method provides a significant gain in the resulting ATR algorithm's generalization performance.Comment: 12 pages, 5 figures, to be submitted to IEEE Transactions on Geoscience and Remote Sensin

    The Validity of MotionSense HRV in Estimating Sedentary Behavior and Physical Activity under Free-Living and Simulated Activity Settings.

    Get PDF
    MotionSense HRV is a wrist-worn accelerometery-based sensor that is paired with a smartphone and is thus capable of measuring the intensity, duration, and frequency of physical activity (PA). However, little information is available on the validity of the MotionSense HRV. Therefore, the purpose of this study was to assess the concurrent validity of the MotionSense HRV in estimating sedentary behavior (SED) and PA. A total of 20 healthy adults (age: 32.5 ± 15.1 years) wore the MotionSense HRV and ActiGraph GT9X accelerometer (GT9X) on their non-dominant wrist for seven consecutive days during free-living conditions. Raw acceleration data from the devices were summarized into average time (min/day) spent in SED and moderate-to-vigorous PA (MVPA). Additionally, using the Cosemed K5 indirect calorimetry system (K5) as a criterion measure, the validity of the MotionSense HRV was examined in simulated free-living conditions. Pearson correlations, mean absolute percent errors (MAPE), Bland-Altman (BA) plots, and equivalence tests were used to examine the validity of the MotionSense HRV against criterion measures. The correlations between the MotionSense HRV and GT9X were high and the MAPE were low for both the SED (r = 0.99, MAPE = 2.4%) and MVPA (r = 0.97, MAPE = 9.1%) estimates under free-living conditions. BA plots illustrated that there was no systematic bias between the MotionSense HRV and criterion measures. The estimates of SED and MVPA from the MotionSense HRV were significantly equivalent to those from the GT9X; the equivalence zones were set at 16.5% for SED and 29% for MVPA. The estimates of SED and PA from the MotionSense HRV were less comparable when compared with those from the K5. The MotionSense HRV yielded comparable estimates for SED and PA when compared with the GT9X accelerometer under free-living conditions. We confirmed the promising application of the MotionSense HRV for monitoring PA patterns for practical and research purposes

    Reinforcement Learning and Design of Nonparametric Sequential Decision Networks

    No full text
    In this paper we discuss the design of sequential detection networks for nonparametric sequential analysis. We present a general probabilistic model for sequential detection problems where the sample size as well as the statistics of the sample can be varied. A general sequential detection network handles three decisions. First, the network decides whether to continue sampling or stop and make a final decision. Second, in the case of continued sampling the network chooses the source for the next sample. Third, once the sampling is concluded the network makes the final classification decision. We present a Q-learning method to train sequential detection networks through reinforcement learning and cross-entropy minimization on labeled data. As a special case we obtain networks that approximate the optimal parametric sequential probability ratio test. The performance of the proposed detection networks is compared to optimal tests using simulations

    Maximum-Likelihood Based Multipath Channel Estimation for Code-Division Multiple-Access Systems

    No full text
    In this paper, the problem of estimating the channel parameters of a new user in a multi-user CDMA communication system is addressed. It is assumed that the new user transmits training data over a slowly fading multipath channel. The proposed algorithm is based on maximum likelihood estimation of the channel parameters. First an asymptotic expression for the likelihood function of channel parameters is derived and a re-parametrization of this likelihood function is proposed. In this re-parametrization, the channel parameters are combined into a discrete time channel filter of symbol period length. Then, Expectation Maximization algorithm and Alternating Projection algorithm based techniques are considered to extract channel parameters from the estimated discrete channel filter, to maximize the derived asymptotic likelihood function. A blind subspace estimation algorithm based on the derived statistics and re-parameterization is also introduced. The performance of the proposed algorithm..
    corecore